TOP 確率統計勉強ノート1 確率変数・確率密度・確率分布・ベルヌーイ分布

確率統計勉強ノート1 確率変数・確率密度・確率分布・ベルヌーイ分布

数学 確率 統計 独学 勉強
作成日時:2019年7月28日(日) 10時04分
更新日時:2019年7月30日(火) 6時45分
マセマの確率統計の本で勉強しています。この記事はp85以降の「ポアソン分布と正規分布」あたりの勉強ノートです。
Amazonリンク

確率変数とは

通常の変数のようにいろいろな値を取るが、各値を取る確率が決まっている変数。
例えば、20%の確率で1を、30%の確率で2を、50%の確率で3を取る確率変数Xなど。
確率変数は変量と呼ぶこともあり、また上の例の1や2や3を確率変数Xの実現値という。

確率関数とは

確率変数が各実現値を取る確率を表す関数。(※確率関数を考えるときの確率変数は離散型)
$ P(X=x) $や$ P(x) $と表し、確率変数Xが実現値xを取る確率を表す。
前述の例に当てはめると$ P(X=1)=P(1)=0.2, P(X=2)=P(2)=0.3, P(X=3)=P(3)=0.5 $のようになる。

確率密度とは

確率変数が連続型のときの確率関数のような関数
連続型確率変数Xがa以上b以下の実現値を取る確率$ P(a \leqq X \leqq b) $が確率密度(関数)の積分として次のように表せる。
\[ P(a \leqq X \leqq b) = \int_a^b f(x) dx \]

確率分布とは

確率変数の各実現値に合計1の確率(確率の合計は1である)がどのように割り振られているかという分布。
簡単には下のような表のことだと思えばいい。
実現値123
確率0.20.30.5

ベルヌーイ分布(二項分布)

定義から述べると、実現値が$ 0, 1, 2, \cdots, n $である離散型確率変数Xの確率関数$ P_k $が次のようになる確率分布のこと。
\[ P_k = P(X=k) = {}_n \mathrm{C}_k \cdot p^k \cdot (1-p)^{n-k} \]意味的には、確率pで事象Aが起こる(確率1-pで事象Aが起こらない)試行をn回行って、n回のうち事象Aがk回起こる確率が$ P_k $である。
具体的には、30%の確率でしか表が出ないイカサマコインを10回投げて、表が0回〜10回出る確率を表にしたもの(下の表)をベルヌーイ分布という。
確率pで事象が起こる試行をn回行ったときのベルヌーイ分布(二項分布)を$ B(n, p) $で表す。
実現値012345678910
確率0.030.120.230.270.20.10.040.010.00.00.0
結局のところ、ベルヌーイ分布は一番有名で重要なただの確率分布(確率の分布)。
僕のGitHubの公開リポジトリにベルヌーイ分布を計算したりグラフ化したりするjupyter notebookを用意したのでもしよろしければ見てください。
jupyter notebook

モーメント母関数(積率母関数)

確率変数(離散型・連続型を問わない)の期待値$ E[X] $や分散$ V[X] $を求めるときに使える関数。
モーメント母関数$ M(\theta) $の定義は次のようになる。
\[ M(\theta) = E[e^{\theta X}] \]これを使うと期待値と分散が次のように表せる。
\[ 期待値 \ \mu = E[X] = M'(0) \]\[ 分散 \ \sigma = E[X^2] - E[X]^2 = M''(0) - M'(0)^2 \]

最新記事


(9/19)数検1級勉強記 優先すべきは興味 or 合格
(9/9)数検1級勉強記 素直になる
(9/3)数検1級勉強記 とにかく書く